A bridge between continuous and discrete-time bioeconomic models: Seasonality in fisheries

I recently published a paper together with good colleagues in Spain and Norway. The paper is published in the journal Ecological Modelling and is on the problem of setting up corresponding fisheries economics models in continuous and discrete time. Here is the abstract:

We develop a discretization method to construct a discrete finite-time bioeconomic model, corresponding to bioeconomic models with continuous-time growth function, but allowing the analysis of seasonality in fisheries. The discretization method consists of three steps: first, we estimate a proper growth function for the continuous-time model with the Ensemble Kalman Filter. Second, we use the Runge-Kutta method to discretize the growth function. Third, we use the Bellman approach to analyze the optimal management of seasonal fisheries in a discrete-time setting. We analyze both the case of quarterly harvest and the case of monthly harvest, and we compare these cases with the case of annual harvest. We find that seasonal harvesting is a win–win optimal solution that provides higher harvest, higher optimal steady state equilibrium, and higher economic value than annual harvesting. We also demonstrate that the discretization method overcomes the errors and preserves the strengths of both continuous and discrete-time bioeconomic models.

For some time, the paper is freely downloadable here:
http://www.sciencedirect.com/science/article/pii/S0304380017304192. The paper is part of the ARC-Change project, and is the first in a string of papers on interconnected issues.


Tags: ,

%d bloggers like this: