Letters to a Young Scientist by Edward O. Wilson

Letters to a Young Scientist entices you with its nice cover, small format, and promising title. ‘Pulitzer Price Winner’ is emblazoned on the front, below Wilson’s name. If you don’t think twice, you may think that he got the Pulitzer for Letters. He didn’t.

letters to a young scientist mech.inddIn Letters, Wilson aims to share wisdom accumulated during a long career as a biologist. Admittedly, I am not among his intended readers, as the book is specifically aimed at scientists in the hard sciences. But, science is science, social or not, so I decided there quite likely was some good advice there for a young social scientist as well (young seems to mean younger than Wilson, and that is just about everybody; I think he is in his nineties eighties).

One of the first of Wilson’s advices is, well, essentially, follow your passion. In Wilson’s words, ‘put passion ahead of training’ (p. 25*). I find this advice interesting because over the last couple of years, I have followed Cal Newport’s blog. Cal Newport is a young professor in computer science or something thereabouts. He is also a prolific writer, and he writes about how to succeed at whatever you do. He wrote a book on it called So Good They Can’t Ignore You. I read it. His ideas are particularly suited to young people with high education or much training behind them (like musicians). Cal Newport think passion is the last thing you should worry about if you want to succeed and proceed to live a remarkable life (which, presumably, is the normal course of events; I am sure Newport has a more nuanced view of this, in particular, I think he thinks finding pleasure in being on the way to success is a key element, but this is an aside). Newport has developed something reminiscent of a theory of how to go about to have success. An important part of the theory is that skills developed through meticulous training is necessary to have success. And, to get back to Wilson, Newport’s mantra that following your passion is bad advice clashes with Wilson’s advice, head on. So, who to believe? The experienced, senior, and highly successful Wilson, or the young Newport (on his way to success, I am sure)? I think Newport is right. I do not doubt that Wilson’s advice is ‘an important principle [he’s] seen unfold in the careers of many successful scientists’ (p. 25), but I bet most of them took their training very seriously. If Wilson didn’t, he is probably the lucky guy. Wilson sees a lot of trees, I’m afraid, but there is no forest (his dust jacket notwithstanding). And that most successful scientist has a lot of passion for what they do is not strange at all. It gave them success, after all, and research is supposed to be important and good and I am sure most successful scientist receives a lot of such feedback, and that probably helps if the passion is not always so strong.

Wilson devotes most of his letters to recount success stories from his long life in science. Wilson has studied ants more than anything (and anyone, one gets the impression). Ants are interesting, but do not always feel very relevant to the overarching idea (advising young scientists to succeed). It is not always straight forward to understand what Wilson tries to say. He has a letter with the heading What is Science?, for example, where his answer to his own question leaves something to be desired. In the same letter, he poses What, then, in broadest terms is the scientific method? and again fails to provide a satisfactory answer. In Wilson’s view, a scientific problem leads, after much investigation and in the best of cases, to a scientific fact. He does not find it necessary to make the young scientist aware that there exist an entire literature on philosophy of science that any budding, young scientist should become at least somewhat familiar with and that discusses whether the idea of a scientific fact is indeed well-defined. And, most investigations into scientific problems lead to few answers and more, but perhaps deeper, problems.

A source of the ground strength of science are the connections made not only variously within physics, chemistry, and biology, but also among these primary disciplines. A very large question remains in science and philosophy. It is as follows: Can this consilience-connections made between widely separated bodies of knowledge-be extended to the social sciences and humanities, including even the creative arts? I think it can, and further I believe that the attempt to make such linkages will be a key part of intellectual life in the remainder of the twenty-first century [pp. 62-63].

That is a good advice from Wilson, I think, but already largely taken up in the existing or emerging structure of science, where interdisciplinary work is everywhere pursued and encouraged.

The ideal scientist thinks like a poet and only later works like a bookkeeper [p. 74].

Another meaningful advice, but I think the ideal scientist finds the ideal balance. The creativity necessary to move science (forward, presumably), and the bookkeeping need both to be kept up throughout and cannot be separated into disconnected modes.

Wilson’s narrow world view, which I think makes much of his advice of little value, manifests itself in the following passage, under the title Science as Universal Knowledge:

There is only one way to understand the universe and all within it, however imperfectly, and that is through science. You are likely to respond, Not true, there are also the social sciences and humanities. I know that, of course, I’ve heard it a hundred times, and I’ve always listened carefully. But how different at their foundations are the natural sciences, social sciences, and humanities? The social sciences are converging generation by generation of scholars with biology, by sharing methods and ideas, and thereby conceding more and more to the realities of the ultimately biological nature of our species. […] Yet however much the humanities enrich our lives, however definitively they defend what it means to be human, they also limit thought to that which is human, and in this one important sense they are trapped within a box [pp. 169 – 170].

And with that, he rambles into speculations about extraterrestrial intelligence. But what to take away? If your passion lies with a social science, you should become a biologist as that is where everything ends up in the end, anyway? I don’t think so (I don’t even think passion should matter). Wilson only stretches the meaning of biology, and that is of little use. He may be right that one day, human knowledge may be much more integrated as an entire body of knowledge rather than a number of separate disciplines with a few links in between. But that is really not all that relevant. What we should be thinking, is that all scientific activity sorts under science. To think of different scientific activities in a hierarchical manner is of little value.

Wilson has already proposed a biologically based theory of human behavior; human sociobiology. It caused a lot of upheaval at the time, and understandably so given statements like the following, by Wilson:

In hunter-gatherer societies, men hunt and women stay at home. This strong bias persist in most agricultural and industrial societies and, on that ground alone, appears to have a genetic origin. […] My own guess is that the genetic bias is intense enough to cause a substantial division of labor even in the most free and most egalitarian of future societies. […] Even with identical education and equal access to all professions, men are likely to continue to play a disproportionate role in political life, business and science [quoted from S. J. Gould’s An Urchin in the Storm, p. 29, Wilson originally appeared in The New York Times Magazine, October 12, 1975].

Stephen Jay Gould has written extensively on human sociobiology. Much of it appears in his An Urchin in the Storm. Among his conclusions are that human sociobiology is founded on a flawed mathematical and theoretical basis, that its empirical content is failing. For anyone interested, I can recommend Gould’s review (pp. 107-ff in Urchin) of Wilson’s popular work Promethean Fire, where Gould attacks, among other things, Wilson’s belief in reductionism.

I am not sure how to round up my review of Wilson’s Letters. As a young (social) scientist myself, I cannot say I learned a lot from it; nothing I had not heard from before. As someone not overly interested in ants (although I do find social behavior among animals and insects interesting), I found Wilson’s accounts of his many worldly and scientific adventures way over the top. And Wilson’s constant glorification of his own career and his own choices are nothing but annoying. My conclusions is Don’t read Wilson’s Letters.

* Page numbers refer to the first edition, 2013.

Advertisements

Tags: , , , ,


%d bloggers like this: